2,099 research outputs found

    Collapse models: from theoretical foundations to experimental verifications

    Full text link
    The basic strategy underlying models of spontaneous wave function collapse (collapse models) is to modify the Schroedinger equation by including nonlinear stochastic terms, which tend to localize wave functions in space in a dynamical manner. These terms have negligible effects on microscopic systems-therefore their quantum behaviour is practically preserved. On the other end, since the strength of these new terms scales with the mass of the system, they become dominant at the macroscopic level, making sure that wave functions of macro-objects are always well-localized in space. We will review these basic features. By changing the dynamics of quantum systems, collapse models make predictions, which are different from standard quantum mechanical predictions. Although they are difficult to detect, we discuss the most relevant scenarios, where such deviations can be observedComment: 10 Pages. Invited Talk at the Heinz von Foerster Centenary International Conference on Self-Organization and Emergence: Emergent Quantum Mechanics (EmerQuM11). Nov. 10-13, 2011, Vienna, Austria. Proceedings to appear in J. Phys. (Conf. Series

    The noncavitating performance and life of a small vane-type positive displacement pump in liquid hydrogen

    Get PDF
    The low flow rate and high head rise requirements of hydrogen/oxygen auxiliary propulsion systems make the application of centrifugal pumps difficult. Positive displacement pumps are well-suited for these flow conditions, but little is known about their performance and life characteristics in liquid hydrogen. An experimental and analytical investigation was conducted to determine the performance and life characteristics of a vane-type, positive displacement pump. In the experimental part of this effort, mass flow rate and shaft torque were determined as functions of shaft speed and pump pressure rise. Since liquid hydrogen offers little lubrication in a rubbing situation, pump life is an issue. During the life test, the pump was operated intermittently for 10 hr at the steady-state point of 0.074 lbm/sec (0.03 kg/sec) flow rate, 3000 psid (2.07 MPa) pressure rise, and 8000 rpm (838 rad/sec) shaft speed. Pump performance was monitored during the life test series and the results indicated no loss in performance. Material loss from the vanes was recorded and wear of the other components was documented. In the analytical part of this effort, a comprehensive pump performance analysis computer code, developed in-house, was used to predict pump performance. The results of the experimental investigation are presented and compared with the results of the analysis. Results of the life test are also presented

    Non-interferometric Test of Collapse Models in Optomechanical Systems

    Get PDF
    The test of modifications to quantum mechanics aimed at identifying the fundamental reasons behind the un-observability of quantum mechanical superpositions at the macro-scale is a crucial goal of modern quantum mechanics. Within the context of collapse models, current proposals based on interferometric techniques for their falsification are far from the experimental state-of-the-art. Here we discuss an alternative approach to the testing of quantum collapse models that, by bypassing the need for the preparation of quantum superposition states might help us addressing non-linear stochastic mechanisms such as the one at the basis of the continuous spontaneous localisation model.Comment: 6 pages, accepted for publication in Phys. Rev. Lett.

    Testing collapse models with levitated nanoparticles: the detection challenge

    Get PDF
    We consider a nanoparticle levitated in a Paul trap in ultrahigh cryogenic vacuum, and look for the conditions which allow for a stringent noninterferometric test of spontaneous collapse models. In particular we compare different possible techniques to detect the particle motion. Key conditions which need to be achieved are extremely low residual pressure and the ability to detect the particle at ultralow power. We compare three different detection approaches based respectively on a optical cavity, optical tweezer and a electrical readout, and for each one we assess advantages, drawbacks and technical challenges

    Color-charge separation in trapped SU(3) fermionic atoms

    Get PDF
    Cold fermionic atoms with three different hyperfine states with SU(3) symmetry confined in one-dimensional optical lattices show color-charge separation, generalizing the conventional spin charge separation for interacting SU(2) fermions in one dimension. Through time-dependent DMRG simulations, we explore the features of this phenomenon for a generalized SU(3) Hubbard Hamiltonian. In our numerical simulations of finite size systems, we observe different velocities of the charge and color degrees of freedom when a Gaussian wave packet or a charge (color) density response to a local perturbation is evolved. The differences between attractive and repulsive interactions are explored and we note that neither a small anisotropy of the interaction, breaking the SU(3) symmetry, nor the filling impedes the basic observation of these effects
    corecore